Large Current External FET Controller Type Switching Regulator

Single-output Step-up,
 High - efficiency Switching Regulator
 BD9306AFVM

Single-down

High - efficiency Switching Regulator BD9305AFVM

- Description

BD9305AFVM / BD9306AFVM are 1-channel DC/DC converter controllers.
Step-down DC/DC converter can be configured by BD9305AFVM, and Step-up DC/DC converter can be configured by BD9306AFVM. In addition, the master slave function, which is that the synchronization is possible at the time of multi-connection, is mounted.

- Features

1) 1ch PWM Control DC/DC Converter Controller
2) Input Voltage Range:4.2 to 18 V
3) Feed Back Voltage:1.25 $\pm 1.6 \%$
4) Oscillating Frequency Variable: 100 to 800 kHz
5) Built-in Soft Start Function
6) Standby Current of $0 \mu \mathrm{~A}$ (Typ.)
7) Built-in Master / Slave Function
8) Protection Circuit : Under Voltage Lockout Protection Circuit

Thermal Shutdown Circuit
Short Protection Circuit of Timer Latch type
9) MSOP8 Package
-Applications

- TV, Power Supply for the TFT-LCD Panels used for LCD TVs, Back Lights
- DSC, DVC, Printer, DVD ,DVD Recorder, Generally Consumer Equipments etc.
- Absolute maximum ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit	Unit
Power supply voltage	Vcc	20	V
Power dissipation	Pd	588^{*}	mW
Operating temperature range	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	Tjmax	150	${ }^{\circ} \mathrm{C}$

[^0]－Recommended Operating Ranges（Ta $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ）

Parameter	Symbol	Limit			Unit
		Min	Typ	Max	
Power supply voltage	Vcc	4.2	12	18	V
Control Voltage	$\mathrm{V}_{\text {ENB }}$	-	-	Vcc	V
Timing Capacity	CT	100	-	1000	pF
Timing Resistance	RT	5	-	50	$\mathrm{k} \Omega$
Oscillating frequency	Fosc	100	-	800	kHz

－Electrical Characteristics（Unless otherwise specified $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=12 \mathrm{~V}, \mathrm{CT}=200 \mathrm{pF}, \mathrm{RT}=20 \mathrm{k} \Omega$ ）

Parameter	Symbol	Limit			Unit	Conditions
		Min	Typ	Max		
【Triangular Waveform Oscillator Block】						
Oscillating frequency	FOSC	165	220	275	kHz	$\mathrm{Vcc}=5 \mathrm{~V}$
Charge Threshold Voltage	VOSC ${ }^{+}$	0.80	0.85	0.90	V	
Discharge Threshold Voltage	VOSC^{-}	0.20	0.25	0.30	V	
【Under－voltage lockout protection circuit】						
Threshold Voltage	VUT	3.5	－	4.2	V	
【Error amp Block】						
Feed Back Voltage	VFB	1.230	1.250	1.270	V	
Input Bias Current	IIB	－	0.05	1	uA	$\mathrm{FB}=1.5 \mathrm{~V}$
COMP Sink Current	1 O	35	50	65	uA	$\mathrm{FB}=1.5 \mathrm{~V} \quad \mathrm{COMP}=1.25 \mathrm{~V}$
COMP Source Current	100	35	50	65	uA	$\mathrm{FB}=1.0 \mathrm{~V} \quad \mathrm{COMP}=1.25 \mathrm{~V}$
【Gate Drive Block】						
ON Resistance	Ron	－	5	－	Ω	
Gate Drive Voltage L	VGDL	－	0	0.5	V	No Load
Gate Drive Voltage H	VGDH	Vcc－0．5	Vcc	－	V	No Load
MAX Duty（BD9305AFVM）	MDT	－	－	100	\％	$\mathrm{Vcc}=5 \mathrm{~V}$
MAX Duty（BD9306AFVM）	MDT	－	83	－	\％	$\mathrm{Vcc}=5 \mathrm{~V}$
【Control Block】						
ON Voltage	VON	2	－	－	V	
OFF Voltage	VOFF	－	－	0.3	V	
ENB Sink Current	IENB	40	60	90	uA	ENB＝5V
【Soft Start Block】						
Soft Start Time	TS	－	10	－	ms	
【Timer Latch Protection Circuit】						
Latch Detection COMP Voltage	VLC	1.5	1.7	1.9	V	
Latch Delay OSC Count Number	CNT	－	2200	－	COUNT	
Latch Delay Time	DLY	－	10	－	ms	
【Overall】						
Standby Current	ISTB	－	0	10	uA	ENB＝0FF
Average Consumption Current	ICC	1.0	1.5	2.5	mA	No Switching

[^1]

Fig. 1 Standby Circuit Current

Fig. 4 GD Sink Current

Fig. 7 COMP Source Current

Fig. 2 Average Consumption Current

Fig. 5 GD Source Current

Fig. 8 Feed Back vs Temperature

Fig. 3 Frequency vs Temperature

Fig. 6 COMP Sink Current

Fig. 9 FB Input Bias Current

Fig. 10 ENB Input Current

Fig. 13 Temperature vs MAX Duty (BD9306AFVM)

Fig. 16 Load Response (BD9306AFVM)

Fig. 11 COMP vs DUTY (BD9305AFVM)

Fig. 14 Frequency vs MAX Duty (BD9306AFVM)

Fig. 17 Efficiency Characteristics (BD9305AFVM)

Fig. 12 COMP vs DUTY (BD9306AFVM)

Fig. 15 Load Response (BD9305AFVM)

Fig. 18 Efficiency Characteristics
(BD9306AFVM)

Fig19. Pin Assignment Diagram \& Block Diagram (Above:BD9305AFVM / Below:BD9306AFVM)

-Pin Assignment and Pin Function

Pin No.	Pin Name	
1	RT	Timing Resistance connection Pin
2	CT	Timing Capacity connection Pin
3	ENB	Control Pin
4	GD	Gate Drive Output Pin
5	Vcc	Power Supply Pin
6	GND	Ground pin
7	COMP	Error amp output Pin
8	FB	Error amp inversion input Pin

Fig. 20 Block Diagram / Application Circuit (BD9305AFVM)

Fig. 21 Block Diagram / Application Circuit (BD9306AFVM)

-Block Operation

- Error amplifier (Err)

It is a circuit that compares the standard voltage of 1.25 V (TYP) and the feedback voltage of output voltage.
The switching Duty is determined by the COMP terminal voltage of this comparison result.

- Oscillator (OSC)

It is a block, in which the switching frequency is determined by RT and CT, and the triangular wave is determined by RT and CT.

- PWM

The Duty is determined by comparing the output of Error amplifier and the angular wave of Oscillator.
The switching Duty of BD9306AFVM is limited by the maximum duty ratio that is determined by the internal part, and will not be up to 100%.

- DRV

The gate of the power FET that is connected to the outside is driven by the switching Duty determined by PWM.

- VREF

It is a block that outputs the internal standard voltage of 2.5 V (TYP).
The internal circuit is entirely the bearer of this standard voltage that is turned ON / OFF by the ENB terminal.

- Protection circuits (UVLO / TSD)

UVLO (low-voltage Lock Out circuit) shuts down the circuits when the voltage is below 3.5V (MIN). Moreover, TSD (temperature protection circuit) shuts down the IC when the temperature reaches $175^{\circ} \mathrm{C}$ (TYP).

- Soft Start Circuit

The Soft Start Circuit limits the current at the time of startup while ramping up the output voltage slowly. The overshoot of output voltage and the plunging current can be prevented.

- Timer Latch

It is an output short protection circuit that detects the output short if the output of error amplifier (COMP voltage) is more than 1.7 V (TYP). If the COMP voltage becomes more than 1.7 V , the counter begins to operate, the LATCH is locked when the counter counts to 2200 , and the GD output shuts down. ($*$ the frequency of counter is determined by RT and CT.)
Once the LATCH is locked, the GD output does not operate until it is restarted by ENB or VCC. If the output short is removed while the Timer latch is counting, the counter is reset.

- Selecting Application Components

(1) Setting the output L constant (Step Down DC/DC)

The inductance L to use for output is decided by the rated current ILR and input current maximum value IOMAX of the inductance.

Fig. 22 Coil Current Waveform (Step Down DC/DC)
Fig. 23 Output Application Circuit (Step Down DC/DC)

Adjust so that lomax $+\Delta I_{L} / 2$ does not reach the rated current value $l_{L R}$. At this time, ΔI_{L} can be obtained by the following equation.

$$
\Delta \mathrm{I}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \times(\mathrm{Vcc}-\mathrm{Vo}) \mathrm{X} \frac{V_{0}}{V_{c c}} \times \frac{1}{\mathrm{f}}[\mathrm{~A}]
$$

Set with sufficient margin because the inductance L value may have the dispersion of $\pm 30 \%$.
If the coil current exceeds the rating current $l_{L R}$ of the coil, it may damage the IC internal element.
(2) Setting the output L constant (Step Up DC/DC)

The inductance L to use for output is decided by the rated current ILR and input current maximum value IINMAX of the inductance.

Fig. 24 Coil Current Waveform (Step Up DC/DC)
Fig. 25 Output Application Circuit (Step Up DC/DC)

Adjust so that $l_{\text {INMAX }}+\Delta I_{L} / 2$ does not reach the rated current value $l_{L R}$. At this time, ΔI_{L} can be obtained by the following equation.

$$
\Delta I_{L}=\frac{1}{L} \operatorname{Vcc} X \frac{V-V c c}{V o} \times \frac{1}{f} \quad[A] \quad \text { Where, } f \text { is the switching frequency }
$$

Set with sufficient margin because the inductance L value may have the dispersion of $\pm 30 \%$.
If the coil current exceeds the rating current I_{LR} of the coil, it may damage the IC internal element.
(3) Setting the output capacitor

For the capacitor C to use for the output, select the capacitor which has the larger value in the ripple voltage VPP allowance value and the drop voltage allowance value at the time of sudden load change.

Output ripple voltage is decided by the following equation.

$$
\begin{aligned}
\Delta \mathrm{VPP} & \left.=\Delta \mathrm{ILXRESR}+\frac{\Delta \mathrm{IL}}{2 \mathrm{Co}} \times \frac{\mathrm{Vo}}{\mathrm{Vcc}} \times \frac{1}{\mathrm{f}} \mathrm{~V}\right] \quad \text { (Step Down DC/DC) } \\
\Delta \mathrm{VPP} & =\operatorname{ILMAXXRESR}+\frac{1}{\mathrm{fCo}} \times \frac{\mathrm{Vcc}}{\mathrm{Vo}} \times\left(\mathrm{LLMAX}-\frac{\Delta \mathrm{LL}}{2}\right) \quad[\mathrm{V}] \quad \text { (Step Up DC/DC) }
\end{aligned}
$$

Perform setting so that the voltage is within the allowable ripple voltage range.
For the drop voltage during sudden load change; $V_{D R}$, please perform the rough calculation by the following equation.

$$
\operatorname{VDR}=\frac{\Delta I}{\mathrm{Co}} \times 10 \mu \mathrm{sec} \quad[\mathrm{~V}]
$$

However, $10 \mu \mathrm{~s}$ is the rough calculation value of the DC/DC response speed. Please set the capacitance considering the sufficient margin so that these two values are within the standard value range.
(4)Setting of feedback resistance constant

For both BD9305AFVM (step down) and BD9306AFVM (step up), please refer to the following formula for setting of feedback resistance.
We recommend $10 \mathrm{k} \Omega \sim 330 \mathrm{k} \Omega$ as the setting range. If a resistance below $10 \mathrm{k} \Omega$ is set, a drop in voltage efficiency will be caused; if a resistance more than $330 \mathrm{k} \Omega$ is set, the offset voltage becomes large because of the internal error amplifier's input bias current of $0.05 \mathrm{uA}(\mathrm{Typ})$. Please set the maximum setting voltage of BD9306AFVM (step up) in such a way that Duty : (Vo-Vcc) / Vo is less than 70%.

$$
\begin{equation*}
\mathrm{Vo}=\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2} \times 1.25 \tag{V}
\end{equation*}
$$

Fig. 26 Feedback Resistance Setting
(5) Setting of oscillation frequency

The angular wave oscillation frequency can be set by respectively connecting resistor and condenser to RT (1 pin) and CT (2 pins). The currents to charge and discharge the condenser of CT are determined by RT. Please refer to the following drawing for setting the RT's resistor and the CT's condenser.
RT:5~50k Ω, CT:100~1000pF, and the frequency range of $100 \mathrm{kHz} \sim 800 \mathrm{kHz}$ are recommended.
Please pay attention to that, the switching will stop if your setting is off this range.

Fig. 27 Frequency Setting

For DC/DC converter, the condenser at the input side is also necessary because peak current is flowing between input and output. Therefore, we recommend the low ESR condenser with over $10 \mu \mathrm{~F}$ and below $100 \mathrm{~m} \Omega$ as the input condenser. If a selected condenser is off this range, excessively large ripple voltage will overlaps with the input voltage, which may cause IC malfunction.

However, this condition varies with negative overcurrent, input voltage, output voltage, inductor's value, and switching frequency, so please be sure to do the margin check with actual devices.

(7)Selection of output rectifier diode

We recommend the Schottky barrier diode as the diode for rectification at the output stage of DC/DC converter. Please be careful to choose the maximum inductor current, the maximum output voltage and the power supply voltage.

```
<step-down DC/DC>
    Maximum inductor current lOMAX + \}\frac{\Delta\mp@subsup{\textrm{L}}{\textrm{L}}{}}{2}<<\mathrm{ Diode's rated current
    Power supply voltage VCC < Diode's rated voltage
<step-up DC/DC>
    Maximum inductor current linMAx +\frac{\Delta\mp@subsup{|}{\textrm{L}}{}}{2}<< Diode's rated current
    Maximum output voltage V \max < Diode's rated voltage
```

Furthermore, each parameter has a deviation of $30 \% \sim 40 \%$, so please design in such a way that you have left a sufficient margin for deviation in your design.
(8)Setting of Power FET

If step-down DC/DC is configured by BD9305AFVM, Pch FET is necessary; if step-up DC/DC is configured by BD9306AFVM, Nch FET is necessary.
Please pay attention to the following conditions when you choose.
<step-down DC/DC>

| Maximum inductor current | IOMAX $+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}$ | $<$ FET's rated current |
| :--- | :---: | :---: | :--- |
| | | |
| Power supply voltage | VCC | $<$ FET's rated voltage |
| Power supply voltage | VCC | $>$ FET's gate ON voltage |
| Gate capacity $(※)$ | C $_{\text {GATE }}$ | $<2000 \mathrm{pF}$ |

<step-up DC/DC>

| Maximum inductor current | $\mathrm{I}_{\mathrm{INMAX}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}$ | $<$ FET's rated current |
| :--- | :---: | :---: | :--- |
| Maximum output voltage | $\mathrm{V}_{\text {OMAX }}$ | $<$ FET's rated voltage |
| Power supply voltage | VCC | $>$ FET's gate ON voltage |
| Gate capacity $(※)$ | C $_{\text {GATE }}$ | $<2000 \mathrm{pF}$ |

Furthermore, each parameter has a deviation of $30 \% \sim 40 \%$, so please design in such a way that you have left a sufficient margin for deviation in your design.
$(※)$ If Gate capacity becomes large, the switch's switching speed gets slow, which may cause generation of heat and breakdown, so please check thoroughly with actual devices.

- Selecting Application Components

(9) Phase compensation

Phase Setting Method
The following conditions are required in order to ensure the stability of the negative feedback circuit.
-Phase lag should be 150° or lower during gain $1(0 \mathrm{~dB})$ (phase margin of 30° or higher).

Because DC/DC converter applications are sampled using the switching frequency, the overall GBW should be set to $1 / 10$ the switching frequency or lower. The target application characteristics can be summarized as follows:
-Phase lag should be 150° or lower during gain $1(0 \mathrm{~dB})$ (phase margin of 30° or higher).
-The GBW at that time (i.e., the frequency of a $0-\mathrm{dB}$ gain) is $1 / 10$ of the switching frequency or below.

In other words, because the response is determined by the GBW limitation, it is necessary to use higher switching frequencies to raise response.

One way to maintain stability through phase compensation involves canceling the secondary phase lag (-180°) caused by LC resonance with a secondary phase advance (by inserting 2 phase advances).
The GBW (i.e., the frequency with the gain set to 1) is determined by the phase compensation capacitance connected to the error amp. Increase the capacitance if a GBW reduction is required.
(a) Standard integrator (low-pass filter)
(b) Open loop characteristics of integrator

Fig. 30

Fig. 31

$$
\text { Point (a) fa }=\frac{1}{2 \pi R C A} \quad[H z]
$$

Point (b) $\mathrm{fb}=\mathrm{GBW}=\frac{1}{2 \pi \mathrm{RC}} \quad[\mathrm{Hz}]$
The error amp performs phase compensation of types (a) and (b), making it act as a low-pass filter.
For $\mathrm{DC} / \mathrm{DC}$ converter applications, R refers to feedback resistors connected in parallel.
From the LC resonance of output, the number of phase advances to be inserted is two.

LC resonant frequency fp $=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}[\mathrm{Hz}]$ Phase advance

Phase advance

$$
\mathrm{fz2}=\frac{1}{2 \pi \mathrm{C} 2 \mathrm{R} 3}[\mathrm{~Hz}]
$$

Fig. 32
Set a phase advancing frequency close to the LC resonant frequency for the purpose of canceling the LC resonance.
(※)If high-frequency noise is generated in the output, FB is affected through condenser C1. Therefore, please insert the resistor $\mathrm{R} 4=1 \mathrm{k} \Omega$ or so, which is in series with condenser C 1 .
※We recommend the application circuit examples with confidence, but hope that you will thoroughly check the characteristics over again when putting them to use.
When you change the external circuit constant and use, please make a decision to leave a sufficient margin after taking into consideration the deviation etc. of external components and ROHM IC, in terms of not only the static characteristic but also the transient characteristic.
Moreover, please understand that our company can not confirm fully with regard to the patent right.

<Master Slave Function>

The master slave function, which is that the synchronous switching is possible by using these IC of BD9305AFVM / BD9306AFVM through their multi-connection, is mounted. The following drawing shows an example of connection circuit in which BD9305AFVM is connected on the master side and BD9306AFVM is connected on the slave side.

Fig. 31 Master Slave Application Circuit

In the above-mentioned circuit, BD9306AFVM, which is synchronized with the switching frequency determined by RT and CT of BD9305AFVM that is the master, operates.
In addition, the ON/OFF of output can be controlled by connecting the switch to the COMP terminal.
(Refer to the following table)
Control signal correspondence table

Output state		Control signal		
Vo1	Vo2	CTL0	$\overline{\text { CTL1 }}$	$\overline{\text { CTL2 }}$
OFF	OFF	Low	$*$	$*$
OFF	ON	High	High	Low
ON	OFF	High	Low	High
ON	ON	High	Low	Low

* The same in either case of High / Low.

Similarly in the case of connecting three or more than three, synchronization is possible by connecting the CT terminal of Master and the CT terminal of Slave

-Operation Notes

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.
2) GND potential

Ensure a minimum GND pin potential in all operating conditions.
3) Setting of heat

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
4) Pin short and mistake fitting

Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC. Shorts between output pins or between output pins and the power supply and GND pins caused by the presence of a foreign object may result in damage to the IC.
5) Actions in strong magnetic field

Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.
6) Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.
7) Ground wiring patterns

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring patterns of any external components.
8) Regarding input pin of the IC

This monolithic IC contains $\mathrm{P}+$ isolation and P substrate layers between adjacent elements in order to keep them isolated. P / N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements.

For example, when the resistors and transistors are connected to the pins shown as follows, a parasitic diode or a transistor operates by inverting the pin voltage and GND voltage.
The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements such as by the application of voltages lower than the GND (P substrate) voltage to input and output pins.

Example of a Simple
Monolithic IC Architecture

9) Overcurrent protection circuits

An overcurrent protection circuit designed according to the output current is incorporated for the prevention of IC damage that may result in the event of load shorting. This protection circuit is effective in preventing damage due to sudden and unexpected accidents. However, the IC should not be used in applications characterized by the continuous operation or transitioning of the protection circuits. At the time of thermal designing, keep in mind that the current capacity has negative characteristics to temperatures.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

[^2]
[^0]: * Reduced by $4.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$, when mounted on a glass epoxy 4-layer board ($70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$)
 ** Must not exceed Pd.

[^1]: ＊This product is not designed for protection against radio active rays．

[^2]: Copyright © 2008 ROHM CO.,LTD.
 ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
 TEL: +81-75-311-2121
 FAX : +81-75-315-0172

